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ABSTRACT
Pansharpening is a technique that fuses a low resolution mul-
tispectral image and a high resolution panchromatic image,
to obtain a multispectral image with the spatial resolution and
quality of the panchromatic image while preserving spec-
tral information of the multispectral image. In this paper,
we present a new pansharpening method based on contourlet
transform and Bayesian inference that generalizes the clas-
sical contourlet based algorithms. The experimental results
show that the proposed method not only enhances the spatial
resolution of the pansharpened image, but also preserves the
spectral information of the original multispectral image.

1. INTRODUCTION

In optical remote sensing, with physical and technological
constraints, some satellite sensors provide images of two
classes, panchromatic (PAN) images with high spatial and
low spectral resolution, and multispectral (MS) images with
high spectral and low spatial resolutions. This trade off leads
to the lack of high spectral and high spatial resolutions in a
single image. The fusion of high spatial resolution PAN im-
ages with high spectral resolution MS images creates such an
image that is important for many applications, such as feature
detection, change monitoring and land cover classification.

In general, pansharpening algorithms improve the spa-
tial resolution of the MS image, while simultaneously retain-
ing its spectral information. In the literature, this task has
been addressed from different points of view (see [1] and [2]
for a description and a comparison of pansharpening meth-
ods). In recent years, multiresolution-based methods, which
includes Laplacian pyramid [3], wavelet-based methods [4]
and contourlet-based methods [5, 6], are becoming popular.
The basic idea of all fusion methods based on multiresolu-
tion decomposition is to extract the spatial detail information
from the PAN image, not present in low resolution MS, to
inject it into the later.

Non-subsampled contourlet transform (NSCT) [5] is an
usual choice in fusion methods, since it provides a complete
shift-invariant and multiscale representation, with a fast im-
plementation. Also NSCT can efficiently overcome the limi-
tations of wavelets dealing with high dimensional signals like
images (i.e. capture geometric structures in images much
more efficiently, because it offers flexible basis functions at
more directions and scales). The building block of NSCT are
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Figure 1: Non subsampled contourlet transform

the 2-D two-channel non-subsampled filter banks (NSFBs).
The NSCT is implemented by two shift-invariant stages; a
non-subsampled pyramid (NSP) structure that gives the mul-
tiscale property, and a non-subsampled direction filter bank
(NSDFB) structure that ensures directionality. Both stages of
the NSCT, depicted in Fig.1, are constructed to be invertible,
in order to have a overall invertible system.

Fusion based on NCST can use several methods for the
injection of the image details: substitution, the simplest one,
addition, and other more complex mathematical models. Re-
gardless of the fusion method, the images to be fused must
have the same resolution so a preprocessing step is needed
to upsample the MS to the size of the PAN image. In this
paper we propose a Bayesian fusion method that comprises,
as particular cases, substitution, addition and some complex
mathematical models.

This paper is organized as follows. In section 2 the gen-
eral algorithm for NSCT pansharpening, using different in-
jection methods, is described and the used notation is intro-
duced. Section 3 explains the Bayesian modeling and the
inference of the high resolution MS image. Experimental re-
sults and comparison with other methods are presented in 4
for synthetic and SPOT5 images and, finally, section 5 con-
cludes the paper.
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2. GENERAL PANSHARPENING ALGORITHM

The contourlet pansharpening method is based on the abil-
ity of the NSCT transform for obtaining the high frequen-
cies image details in the different directions. Based on this
ability, NSCT-based pabsharpening methods intend to extract
the detailed information from the PAN image for injecting
them into the MS image. The main drawback of NSCT-based
pansharpening is the spectral distortion that it may produce.
Pansharpening based on multiresolution decompositions, as
NSCT, can be carried out in different ways. Following [7]
they can be classified as:
A. Substitution Model: It involves completely replacing the

MS image details, extracted with the NSCT transform,
with those of the PAN image.

B. Additive Model: Add the NSCT details information of
PAN image directly to the MS image bands, or to the
NSCT details information of MS image.

C. Mathematical-based Model: It is more complex than the
above methods since it applies mathematical model to de-
tails information in both PAN and MS images and use the
model to weight the information of both images in order
to control noise and color bleeding effects.

All those models start with the observed low resolution MS
image, Y, with B bands, Yi, i = 1, . . . ,B, each of size P =
M×N pixels, and the PAN image, x, of size p = m×n, with
M < m and N < n, that contains reflectance data in a single
band that covers a wide area of the spectrum. Based on those
observations, they find an estimation of y, the high resolution
multispectral (HRMS) image, with B bands, yi, i = 1, . . . ,B,
each of size p = m× n pixels. The general algorithm for
pansharpening based on NSCT, is summarized in Algorithm
1, to obtain an estimation of y, ŷ, from x and Y.
Algorithm 1 NSCT pansharpening algorithm of x and {Yi}
into {ŷi}

1. Upsample each band of the MS image, Yi, to the same
size as PAN, x, and register them obtaining si, i = 1, . . . ,B.
2. Apply NSCT decomposition on the PAN image x and
registered MS image {si},

x = xR +
L

∑
l=1

D

∑
d=1

xld , (1)

si = sR
i +

L

∑
l=1

D

∑
d=1

sld
i , i = 1, . . . ,B, (2)

where we are using the superscript R to denote the residual
(low pass filtered version) NSCT coefficients band and the
superscript ld to refer to the detail bands, with l = 1, . . . ,L,
representing the scale and d = 1, . . . ,D, representing the
directions for each coefficient band.
3. Merge the details of PAN {xld} and MS {sld

i } images
getting {ŷld

i }, keeping the residual image unchanged,

ŷld
i = azxld +bzsld

i , (3)

ŷR
i = sR

i , (4)

where z is the decomposition level and directional.
4. Apply the inverse NSCT to merged MS band coeffi-
cients {ŷR

i }, {ŷld
i }, getting {ŷi},

ŷi = ŷR
i +

L

∑
l=1

D

∑
d=1

ŷld
i , i = 1, . . . ,B. (5)

Note that for bz = 0, we get the substitution model, and
for a = b = 1 we have the additive one, while using different
az and bz values we will get different weighted models pro-
posed in the literature. In this paper we propose to modify the
merging strategy in step 3 of Algorithm 1 by using Bayesian
inference as a mathematical way to estimate the high coeffi-
cients of the HRMS image from PAN and MS images and to
reconstruct HRMS residual image. The used parameters are
estimated at each level of decomposition and direction for
each band, providing a sound way to control the noise, pre-
venting color bleeding and generalizing all previous models.

3. BAYESIAN MODELING AND INFERENCE

Since the PAN image contains the details of the high resolu-
tion MS image but lacks of its spectral information, and the
MS image have the spectral information of the HRMS im-
ages, the relationship between the HRMS band coefficients
and those of the PAN and MS images is defined in this paper
as,

sR
i = yR

i +nR, (6)

sld
i = yld

i +nld
si

, (7)

xld = yld
i +nld

x , (8)

where nR and nld
si

are the noise of MS residual and coeffi-
cients bands, respectively, that is assumed to be Gaussian
with zero mean and known variances (β R

i )−1 and (β ld
i )−1,

respectively and nld
x is the noise of the coefficients bands at

each NSCT decomposition level, l, and direction, d, for PAN
image, that is assumed to be Gaussian with zero mean and
known variance (γ ld

i )−1.
Bayesian methods start with the definition of a prior

model where we incorporate the expected characteristics of
the original NSCT coefficients. Since the residual band is
smoothed version of the original HRM band, for yR

i we
choose a quadratic prior, the Simultaneously Autoregressive
(SAR) prior, given by

p(yR
i ) ∝ (αR

i )(p−1)/2 exp
{
−1

2
α

R
i
∥∥QyR

i
∥∥2
}

, (9)

where Q denotes the Laplacian operator, and αR
i is the model

parameter that control the smoothness degree of the MS
residual band i. For the coefficient band, we choose the To-
tal Variation (TV) prior, that prefers solutions having smooth
areas with sharp edges such as the coefficients of the NSCT,
given by

p(yld
i ) ∝ (α ld

i )p/2 exp
{
−α

ld
i TV (yld

i )
}

, (10)

with TV (yld
i ) = ∑

p
k=1

√
(∆h

k(y
ld
i ))2 +(∆v

k(y
ld
i ))2 where

∆h
k(y

ld
i ) and ∆v

k(y
ld
i ) represent the horizontal and vertical first

order differences at pixel k, respectively, and α ld
i is the model

parameter of the MS band i coefficients at level l and direc-
tion d.

Bayesian methods also need of a degradation model,
where fidelity to the observed data is incorporated, expressed
as the conditional distribution of the observation given the
real data. From the observation model of the MS image in
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Eqs. (6) and (7), we have the following probability distribu-
tions

p(sR
i |yR

i ) ∝ (β R
i )p/2 exp

{
−1

2
β

R
i
∥∥sR

i −yR
i
∥∥2
}

, (11)

and

p(sld
i |yld

i ) ∝ (β ld
i )p/2 exp

{
−1

2
β

ld
i

∥∥∥sld
i −yld

i

∥∥∥2
}

. (12)

The probability distribution of the details of the PAN image,
given HRM coefficients, from Eq. (8), is written as

p(xld |yld
i ) ∝ (γ ld

i )p/2 exp
{
−1

2
γ

ld
i

∥∥∥xld−yld
i

∥∥∥2
}

. (13)

Having defined the degradation and prior models, the
Bayesian inference is performed based on the posterior distri-
bution of the HRMS given the observations. For the residual
band, this posterior distribution is given by

p(yR
i |sR

i ) = p(yR
i ,sR

i )/p(sR
i ), (14)

where p(yR
i ,sR

i ) = p(yR
i )p(sR

i |yR
i ) with p(yR

i ) and p(sR
i |yR

i )
defined in Eqs. (9) and (11), respectively, and the estimation
of the real image y, ŷR

i , can be calculated as the maximum a
posteriori (MAP), that is,

ŷR
i = argmax

yR
i

p(yR
i |sR

i ) = argmin
yR

i

[
−2log p(yR

i |sR
i )
]

(15)

and so

ŷR
i = argmin

yR
i

[
α

R
i
∥∥QyR

i
∥∥2 +β

R
i
∥∥sR

i −yR
i
∥∥2
]
. (16)

By differentiating the right hand side of Eq. (16) with respect
to yR

i and setting it equal to zero we obtain the estimation of
the residual bands ŷR

i as

ŷR
i = (β R

i Ip +α
R
i QT Q)−1

β
R
i sR

i , (17)

where Ip is the identity matrix of size p× p.
Having found an estimation of the residual bands, let us

move to find an estimation of the rest of the NSCT bands.
For those coefficients bands, the posterior distribution is for-
mulated as

p(yld
i |sld

i ,xld) = p(yld
i ,sld

i ,xld)/p(sld
i ,xld) (18)

where p(yld
i ,sld

i ,xld) = p(yld
i )p(sld

i ,xld |yld
i ), with p(yld

i )
defined in Eq. (10) and, assuming that sld

i and xld are in-
dependent, for a given yld

i ,

p(sld
i ,xld |yld

i ) = p(sld
i |yld

i )p(xld |yld
i ), (19)

where p(sld
i |yld

i ) and p(xld |yld
i ) have been defined in Eqs.

(12) and (13), respectively.
In order to perform the estimation from the posterior dis-

tribution we need to calculate p(sld
i ,xld) in Eq. (18). How-

ever, p(sld
i ,xld) cannot be calculated analytically and we will

apply the variational methodology to approximate the poste-
rior distribution by another one, q(yld

i ), that minimizes the
Kullback-Leibler(KL) divergence [8], defined as

CKL(q(yld
i )||p(yld

i |sld
i ,xld))

=
∫

q(yld
i ) log(

q(yld
i )

p(yld
i |sld

i ,xld)
)dyld

i , (20)

which is always non negative and equal to zero only when
q(yld

i ) = p(yld
i |sld

i ,xld).
Unfortunately, the integral in Eq. (20) cannot be directly

evaluated due to the TV prior but we can approximate it by
using the Majorization-Minimization approach [9] that con-
verts a non-quadratic problem to a quadratic one by the intro-
duction of a new parameter that also needs to be estimated.
Thus, the TV prior in Eq. (10) is majorized by the functional
(details can be found in [10]),

M(yld
i ,uld

i )=c.(αi
ld)p/2

exp

−α
ld
i ∑

j

(∆h
j(y

ld
i ))2+(∆v

j(y
ld
i ))2 +uld

i ( j)

2
√

uld
i ( j)

,

(21)

where uld
i is a p−dimensional vector, uld

i ∈ (R+)p, with com-
ponents uld

i ( j), j = 1, ..., p, and that, as we will show later,
has a tight relationship with the image. Substituting Eq. (21)
into Eq. (10), we obtain p(yld

i ) ≥ c.M(yld
i ,uld

i ). To find an
estimation of q(yld

i ) from Eq. (20) we use this lower bound
for p(yld

i ) and alternatively find an estimate of q(yld
i ) and

minimize the bound (see [10] for the details). So, we obtain
that

(uld
i )k+1( j) = Eqk(yld

i )

[
(∆h

j(y
ld
i ))2 +(∆v

j(y
ld
i ))2

]
, (22)

for j = 1, . . . , p, where uk+1
i ( j) represents the local spatial

activity of yld
i and they will be high for pixels in the neigh-

borhood with high level of detail, thus preserving the image
structure, and low for zones with low spatial activity, thus
keeping it smooth. By differentiating

qk(yld
i ) = N (yld

i |Eqk(yld
i )[y

ld
i ],covqk(yld

i )[y
ld
i ]), (23)

we get the estimation of yld
i , which is the mean of the distri-

bution qk(yld
i ), where

Eqk(yld
i )[y

ld
i ] = covqk(yld

i )[y
ld
i ]
[
(β ld

i (sld
i )k + γ

ldxld
i )
]
,

(24)

covqk(yld
i )[y

ld
i ] =

[
α

ld
i ς(uld

i )k +β
ld
i Ip + γ

ld
i Ip

]−1
, (25)

with

ς(uld
i )k = (∆h)tW (uld

i )k(∆h)+(∆v)tW (uld
i )k(∆v), (26)

where ∆h and ∆v represent p× p convolution matrices asso-
ciated with the first order horizontal and vertical differences,
respectively, and

W ((uld
i )k) = diag

(
(uld

i )k( j)−
1
2

)
, (27)
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Measure Band NSCT [6] SR [10] Proposed
COR b1 0.91 0.84 0.99

b2 0.91 0.98 0.99
b3 0.90 0.62 0.98

SSIM b1 0.79 0.90 0.97
b2 0.81 0.94 0.97
b3 0.81 0.85 0.96

PSNR b1 26.75 32.68 38.17
b2 27.17 35.50 39.51
b3 27.65 30.15 36.93

ERGAS - 5.76 3.12 1.61

Table 1: Synthetic Image Quantative Results

is a p× p diagonal matrix, for j = 1, ..., p. This is a spatial
adaptivity matrix since it controls the amount of smoothing
at each pixel location depending on the strength of the inten-
sity variation that pixel, as expressed by the horizontal and
vertical intensity gradient [10].

Returning back to the step 3 in the pansharpening Algo-
rithm 1, and replacing Eqs. (3) and (4) by Eqs. (17) and (25),
respectively, we obtain the residual and coefficient bands for
the estimated HRMS image. Moreover, by setting αR

i = 0,
in Eq. (17), we will have the residual band of HRMS esti-
mated image equal to the MS one, that is, it is equivalent to
Eq. (3), and setting α ld

i = β ld
i = 0 in Eq. (25) we obtain the

NSCT-based substitution model. Also, by setting α ld
i = 0,

γ ld
i = β ld

i = 1, we get the additive model, while setting gaγ ld
i

and β ld
i to different values generates different mathematical

models. By setting α ld
i to a non-zero value, however, will

help our model to control the noise, while merging the coef-
ficients in the different levels and directions.

4. EXPERIMENTAL RESULTS

In this section, the proposed NSCT-based pansharpening
method using the Bayesian inference is tested. Experiments
on a synthetic color image and a real SPOT5 image are
conducted to test the proposed method. The observations
of the synthetic multispectral are obtained from the color
image, displayed in Fig. 2(a), by convolving it with mask
0.25× 12×2 to simulate sensor integration, and then down-
sampling it by a factor of two by discarding every other pixel
in each direction and adding zero mean Gaussian noise with
variance 16. For the PAN image we used the luminance of
the original color image and zero mean Gaussian noise of
variance 9 was added. The observed MS image was upsam-
pled to the same size of PAN image by the cubic interpo-
lation and then 3 levels of NSCT decomposition was ap-
plied on each upsampled MS band and PAN image with 4
and 8 directional levels, for the first two and the third de-
composition levels, respectively. The proposed algorithm
was run on the resulting coefficients bands until the crite-
rion ‖(yld

i )k− (yld
i )k−1‖2/‖(yld

i )k−1‖2 < 10−4 was satisfied,
where (yld

i )k denotes the mean of qk(yld
i ), which typically is

reached within 2 iterations in the first decomposition levels,
and 4 iterations in the other levels. The values of parameters
were experimentally chosen to be αi = 0.045, βb = 1/16,
i = 1,2,3 and γ = 0.9. We are working on the method that it
can estimate the parameters automatically. We compared the

(a) Original image (b) Observed PAN image

(c) Observed MS image (d) NSCT method in [6]

(e) SR method in [10] (f) proposed method.

Figure 2: Results for the synthetic image

proposed NSCT using Bayesian inference method with the
SR method in [10] and the additive NSCT method [6]. The
resulted images corresponding to each method are displayed
in Fig. 2(d)-(f).

To assess the spatial improvement of the pansharpened
images we use the correlation of the high frequency compo-
nents (COR) [1] which takes values between zero and one
(the higher the value the better the quality of the pansharp-
ened image). Spectral fidelity was assessed by means of the
the peak signal-to-noise ratio (PSNR), the Structural Simi-
larity Index Measure (SSIM) [11], an index ranging from−1
to +1, with +1 corresponding to exactly equal images, and
the ERGAS [12] index, a global criterion for what the lower
the value, the higher the quality of the pansharpened image.
Table 1 shows the corresponding quantitative results. The
proposed method provides better results for each measure.
The COR values reflect that all methods are able to incorpo-
rate the details of the PAN image into the pansharpened one,
although the SR method in [10], see Fig. 2(e), introduced
less details in the band 3 (blue) since it contributes less to the
PAN image and more into the band 2 (green) since it has the
highest contribution, which is reflected as a greenish color
near the edges of the image. The NSCT method in [6] incor-
porates details in all the bands but produces a noisy image,
see Fig. 2(d). The proposed method (Fig. 2(f)) is able to in-
corporate details in all the bands while controls the noise and
avoids the color bleeding effect. The spectral fidelity mea-
sures show that the proposed method performs better than
the competing methods, which is also clear from the image
in Fig. 2(f). The PSNR for the proposed method is about
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(a) Observed MS image (b) Observed PAN image

(c) Bicubic Interpolation (d) NSCT method in [6]

(e) SR method in [10] (f) proposed method.

Figure 3: Results for the SPOT5 image

10dB higher than NSCT method in [6] and from 2dB to al-
most 6dB higher than for the SR method in [10], with a re-
markable high SSIM and low ERGAS values which reflect
the high quality of the resulting images.

In the second experiment, the method was tested on real
SPOT5 dataset, where the MS image covers a region of in-
terest of 256 by 256 pixels with pixel resolution of 10 m,
while the PAN image is 512 by 512 pixels with a pixel res-
olution of 5 m. The MS image consists of four bands from
the visible and infrared region corresponding to green (0.50-
0.59 µm), red (0.61-0.68 µm), Near IR (0.78-0.89 µm), Mid
IR(1.58-1.75 µm), while the PAN image consists of a sin-
gle band covering the visible and NIR (0.48-0.71 µm). Fig-
ure 3(a) shows a region of the RGB color image representing
bands 1 to 3 of the MS image. Its corresponding PAN and
bicubic interpolation image are depicted in Fig. 3(b) and (c),
respectively. The resulted images, displayed in Figs. 3(c)-(f),
reveal similar conclusions to the obtained for the synthetic
image, from the visual inspections. The NSCT method in [6]
(Fig.3(d)) provides a detailed image but quite noisy, the SR
method in [10] provides good details for bands 1 and 2, see
Fig.3(e), but not for bands 3 and 4 since the PAN image does
not cover those bands. This is why the blue color in Fig.3(e),
seems to be vanished. The proposed method in Fig.3(f), pro-
vides the best result, preserving the spectral properties of
MS image while incorporating the high frequencies from the
panchromatic image and controlling the noise in the image.

5. CONCLUSION

In this paper we propose a new pansharpening method that
generalizes the fusion strategy of the panchromatic and mul-
tispectral images in contourlet based methods. The proposed
fusion algorithm is based on the Bayesian modelling and
incorporates a solid way to incorporate the details in the
panchromatic into the multispectral image while controlling
the noise. Particular cases of the proposed fusion method are
substitution, additive and weighted contourlets methods.

The proposed pansharpening method has been compared
with other methods both in synthetic and real images and its
performance has been assesed both numerically and visually.
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